MASONRY DETAILS
FOR
RESIDENTIAL CONSTRUCTION

by

Dr. M.A. Hatzinikolas, P.Eng.

Canadian Masonry Research Institute
February 1994
MASONRY DETAILS FOR RESIDENTIAL CONSTRUCTION

by

Dr. M.A. Hatzinikolas, P.Eng.

February, 1994
Canadian Masonry Research Institute
Acknowledgements

The details contained in this publication were drafted by Mr. Thomas Nicoll C.E.T. of Cadd-abilities Design, Drafting & Inspection Services and reviewed by Mr. R. Pacholok, M.Sc., P.Eng. of Fero Corp. and Mr. Gary Sturgeon, M.Sc., P.Eng. Code Development Engineer for the Masonry Council of Canada. We would like to express our appreciation for their input.

Masonry Details for Residential Construction

Copyright© 1994 by the Canadian Masonry Institute. All rights reserved. No part of this publication may be reproduced in any form without prior written permission of the Canadian Masonry Institute.

Note: Although every effort has been made to ensure that the information and drawings in the publication is factual and accurate to a degree consistent with current design practice, neither the author nor the Canadian Masonry Institute can assume responsibility for errors or omissions, nor for engineering designs and plans based on it.

Printed in co-operation of the Masonry Institute of British Columbia. For masonry technical input in British Columbia please call Mr. Bob Martin, P. Eng., (604) 291-1458 at Masonry Institute of British Columbia, 3636 East 4th Avenue, Vancouver, B.C., V5M 1M3

Developed by: Canadian Masonry Research Institute
Suite # 200, 10712-176 Street
Edmonton, Alberta, T5S 1G7
Tel.: (403) 489 - 1768
Fax: (403) 484 - 1970
Recommended Components And Accessories For Constructing Masonry Veneers

Mortar
Use Type S or Type N mortar mixed in proportions by volume as per CSA Standard A179 "Mortar and Grout for Unit Masonry".

Mortar Proportions by Volume

<table>
<thead>
<tr>
<th>Mortar Type</th>
<th>Portland Cement</th>
<th>Hydrated Lime or Lime Putty</th>
<th>Aggregate*</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1</td>
<td>1/2</td>
<td>4-1/2</td>
</tr>
<tr>
<td>N</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

OR

<table>
<thead>
<tr>
<th>Mortar Type</th>
<th>Portland Cement</th>
<th>Masonry Cement</th>
<th>Aggregate*</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1/2</td>
<td>1 (Type H)</td>
<td>4-1/2</td>
</tr>
<tr>
<td>N</td>
<td>0</td>
<td>1 (Type H)</td>
<td>3</td>
</tr>
</tbody>
</table>

Ties
For cavities less than or equal to 25 mm, 22 gauge corrugated strips can be used to fasten the wall to the backup system. Corrugated strips should be hot dip galvanised for corrosion protection. They should be fastened to the wood frame by means of galvanised spiral nails penetrating a minimum of 63 mm into the wood frame. The position and placing of the corrugated strip should be as shown in Figure 18, adopted from CSA Standard A370 "Connectors for Masonry".

Figure 19: Corrugated Strip Tie Installation Guidelines
The guidelines for installation and limitations of the corrugated strip ties as stated in CSA Standard A370-M84 should be followed.

Standard corrugated strip ties normally used to connect masonry veneer to its structural backing in buildings not exceeding 11 m in height, shall have corrugations over at least the embedment length and the following characteristics:
(a) thickness: 0.76 ± 0.05 mm;
(b) width: 22 ± 2 mm;
(c) wavelength of corrugations: 10 ± 1 mm; and
(d) depth of corrugations from crest to trough: 2 to 3 mm.

Where standard corrugated strip ties are used to connect masonry veneer to a structural backing
(a) the ties shall be embedded at least 50 mm in masonry units;
(b) the maximum unsupported length of tie between the veneer and its structural backing shall be 25 mm;
(c) strip ties shall be connected directly to the studs or other structural backing; and
(d) strip ties shall not be bent or sloped between the veneer and the structural backing, except as specified in Clause 9.2.1.3.

Where standard corrugated strip ties are to be connected to steel studs, the load capacity and performance of the fasteners used shall be determined by physical testing in accordance with Clause 11.

The maximum spacing for standard corrugated strip ties where pressure on the veneer does not exceed 1.4 kPa shall be as follows:

<table>
<thead>
<tr>
<th>Maximum cavity width mm</th>
<th>Horizontal</th>
<th>Vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a) 400</td>
<td>600</td>
</tr>
<tr>
<td>or (b) 600</td>
<td>400</td>
<td></td>
</tr>
</tbody>
</table>

Flashing and weep holes should be incorporated into the veneer wall at the base level. Flashing should also be installed at the window sills and wherever angle iron is used to support the veneer. Good quality flashing materials installed with slope and a drip edge this will ensure proper drainage and durability.
Masonry Units

The details contained in this booklet are applicable for tyndall stone, burned clay units and concrete bricks. For projects incorporating long walls and where the walls are supported by flexible structural components, control joints must be incorporated into the wall assemblies.

Caution: The use of used masonry units (reclaimed bricks) requires careful selection of the units to ensure that these units were meant for exterior application. Reclaimed backup bricks deteriorate very rapidly when used in exterior applications. Units new and old used to construct backup walls must satisfy the existing (current) manufacturing standards especially current durability requirements.

Flashing

A sheet of impervious material built into the structure to prevent moisture penetration and/or to direct water which may penetrate the veneer to the outside. Suitable materials to be used for flashing shall not be less than the following.

- Polyethylene sheet 0.15 mm;
- Sheet lead, 1.73 mm;
- Galvanised steel, 0.33 mm;
- Copper, 0.36 mm;
- Copper, 0.05 mm laminated to felt or kraft paper;
- Zinc, 0.46 mm, and
- Poly(vinyl chloride), 0.50 mm
Construction Details for Residential Buildings

Following figures show the construction details for residential buildings.

Figure 1 Building elevation
Figure 2 Brick veneer over garage door opening
Figure 3 Typical brick angle support detail for garage opening
Figure 4 Brick veneer supported by truss (typically over attached garages)
Figure 5 Alternate brick veneer supported by truss (typically over attached garages)
Figure 6 Section through brick veneer supported by truss (typically over attached garages)
Figure 7 Section through alternate brick veneer supported by truss (typically over attached garages)
Figure 8 Typical wall section
Figure 9 Alternate brick detail at soffit
Figure 10 Typical steel shelf angle brick support
Figure 11 Typical concrete foundation wall brick support detail
Figure 12 Wall section with insulation in the cavity
Figure 13 Steel shelf angle brick support detail with cavity insulation
Figure 14 Steel shelf angle brick support detail at stud wall for window openings
Figure 15 Brick shelf angle support detail for bay window
Figure 16 Section through typical brick shelf angle support detail for bay window
Figure 17 Typical brick angle support detail for bay window
Figure 18 Window opening with loose angle iron lintel

Tables 1 presents the spacing of anchors to be used to anchor the brick veneer support steel shelf angle to the concrete wall and Table 2 presents the Maximum allowable spans for steel shelf angles supporting the brick veneer.
Brick veneer over garage door opening

Figure 2

CONTROL JOINT

TIE SPACING
600 mm O.C. VERTICAL
300 mm O.C. HORIZONTAL (MAXIMUM)
FROM THE EDGE OF THE OPENINGS

CONTINUOUS STEEL ANGLE

x

x
CASE # 1
NO CAVITY INSULATION

SECTION X - X

CASE # 2
CAVITY INSULATION

Figure 3 Typical brick angle support detail for garage opening
Figure 4 Brick veneer supported by truss (typically over attached garages)
Figure 5 Alternate brick veneer supported by truss (typically over attached garages)
Figure 6 Section through brick veneer supported by truss (typically over attached garages)
Figure 7
Section through alternate brick veneer supported by truss (typically over attached garages)

50 x 50 x 10 mm CLIP ANGLES FASTENED WITH 10 mm DIAMETER LAG BOLTS @ 75 mm LONG

DOUBLE STUD FRAMING

L100 x 100 x 10 CONT. STEEL BRICK SUPPORT ANGLE C.W. THRU BOLTS @ 400 mm O.C.

L100 x 100 x 10 CONTINUOUS BRICK SUPPORT ANGLE C.W. THRU BOLTS @ 400 mm O.C. ADD DOUBLE SOLID BLOCKING BETWEEN STUDS AS SHOWN

FLASHING

ROOFING PAPER
PLYWOOD SHEATHING
ROOF TRUSSES

Typically over Attached Garages
TYPICAL BRICK ANGLE SUPPORT DETAIL
AT STUD WALL FOR WINDOW OPENINGS

BRICK VENEER
25 mm AIR SPACE
RIGID INSULATION
BUILDING PAPER
EXTERIOR SHEATHING
STUD WALL
BATT INSULATION
VAPOR BARRIER
DRYWALL

BRICK TIES
SPACED 400 mm O.C. HORIZONTAL
600 mm O.C. VERTICAL

TYPICAL BRICK ANGLE SUPPORT DETAIL

WEEP HOLES @ 600 mm O.C.
FLASHING
RIGID INSULATION
DAMP-PROOFING

Figure 8 Typical wall section
Figure 10 Typical steel shelf angle brick support
Figure 12 Wall section with insulation in the cavity
Figure 13 Steel shelf angle brick support detail with cavity insulation
Figure 14 Steel shelf angle brick support detail at stud wall for window openings
Figure 15 Brick shelf angle support detail for bay window
Figure 16 Section through typical brick shelf angle support detail for bay window
Figure 17 Typical brick angle support detail for bay window
Figure 18 Window opening with loose angle iron lintel
Table 1 Anchoring on concrete basement wall 90 mm x 90 mm x 10 mm angle iron to provide support for brick veneer

<table>
<thead>
<tr>
<th>Height of Brick, m</th>
<th>Spacing</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Drop-In Anchor</td>
<td>Wedge Anchor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2" Dia.</td>
<td>5/8" Dia.</td>
<td>1/2" Dia.</td>
</tr>
<tr>
<td>1.2</td>
<td>1.10 m</td>
<td>1.20 m</td>
<td>1.20 m</td>
</tr>
<tr>
<td>1.8</td>
<td>0.70 m</td>
<td>1.20 m</td>
<td>1.10 m</td>
</tr>
<tr>
<td>2.4</td>
<td>0.50 m</td>
<td>0.90 m</td>
<td>0.80 m</td>
</tr>
<tr>
<td>3.0</td>
<td>0.45 m</td>
<td>0.70 m</td>
<td>0.60 m</td>
</tr>
<tr>
<td>3.6</td>
<td>0.35 m</td>
<td>0.60 m</td>
<td>0.50 m</td>
</tr>
<tr>
<td>Min. Embedment</td>
<td>50 mm</td>
<td>60 mm</td>
<td>60 mm</td>
</tr>
<tr>
<td>Min. Edge Distance</td>
<td>65 mm</td>
<td>80 mm</td>
<td>65 mm</td>
</tr>
</tbody>
</table>
Table 2
Maximum Allowable Spans for Steel Lintels
Supporting Masonry Veneer---with Imperical Equivalents

<table>
<thead>
<tr>
<th>Minimum angle size</th>
<th>Brick thickness</th>
<th>Stone thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>75 mm</td>
<td>90 mm</td>
</tr>
<tr>
<td></td>
<td>3 Inches</td>
<td>3-5/8 Inches</td>
</tr>
<tr>
<td></td>
<td>Span</td>
<td>Span</td>
</tr>
<tr>
<td>90x75x6.0</td>
<td>2500"</td>
<td>--</td>
</tr>
<tr>
<td>3.5x3x0.25</td>
<td>8 ft 4 in</td>
<td>8 ft 1 in</td>
</tr>
<tr>
<td>90x90x6.0</td>
<td>2600"</td>
<td>2500</td>
</tr>
<tr>
<td>3.5x3.5x0.25</td>
<td>8 ft 5 in</td>
<td>8 ft 10 in</td>
</tr>
<tr>
<td>100x90x6.0</td>
<td>2800"</td>
<td>2700</td>
</tr>
<tr>
<td>4x3.5x0.25</td>
<td>9 ft 3 in</td>
<td>8 ft 10 in</td>
</tr>
<tr>
<td>125x90x6.0</td>
<td>3300"</td>
<td>3100</td>
</tr>
<tr>
<td>5x3.5x0.25</td>
<td>10 ft 10 in</td>
<td>10 ft 4 in</td>
</tr>
<tr>
<td>150x90x6.0</td>
<td>3700"</td>
<td>3500</td>
</tr>
<tr>
<td>6x3.5x0.25</td>
<td>12 ft 3 in</td>
<td>11 ft 8 in</td>
</tr>
</tbody>
</table>

Adopted from CSA standard CAN3-A370-M84, "Connectors for Masonry"
LIST OF PRODUCERS-SUPPLIERS IN THE PRAIRIES

CALGARY MASONRY SUPPLIES
407 Airdrie Road W.
P.O. Box 3712
Airdrie, Alberta
Bill Coats
Ph. 403-948-2018
Fax 403-948-6555

CINDERCRETE PRODUCTS LTD.
605 Ave., P. South
Saskatoon, Sask.
S7M 2W7
Ron Chelack
Ph. 306-653-3933
Fax 306-664-6150

CINDERCRETE PRODUCTS
Victoria & Fleet
P.O. Box 306
Regina, Sask.
S4P 3A1
Jerry Tell
Ph. 306-789-2636
Fax 306-789-7499

EDCON
P.O. Box 2038
St. Albert, Alberta
T8N 2A3
Bruce Clark
Ph. 403-447-2122
Fax 403-447-1426

ESTEVAN BRICK
2536 - 7 Avenue N.E.
Calgary, Alberta
T2A 2L7
Ed Fioroni
Ph. 403-235-6933
Fax 403-248-0003

ESTEVAN BRICK
8605 - Coronet Road
Edmonton, Alberta
T6E 4P2
Cyril Blaseg
Ph. 403-469-7104
Fax 403-466-5884

ESTEVAN BRICK
2219 Speers Avenue
Saskatoon Saskatchewan
S7L 5X6
Jason Scarfe
Ph. 306-664-3388
Fax 306-664-6493

ESTEVAN BRICK LTD.
1500 Chevrier Boulevard
Winnipeg, Manitoba
R3T 1Y6
Murray Alston
Ph. 204-284-1773
Fax 204-477-0773

ESTEVAN BRICK
P.O. Box 40
Estevan, Saskatchewan
S4A 2A2
Mike Csada
Ph. 306-634-2531
Fax 306-634-9985

ESTEVAN BRICK LTD.
140 - 6th Avenue East
Regina, Sask.
S4N 5A5
Steve Flett
Ph. 306-525-2591
Fax 306-565-3272
LETHBRIDGE CONCRETE PRODUCTS
Box 667
Lethbridge, Alberta
T1J 3Z6
Jonas Slanisky
Ph. 403-328-9251
Fax 403-328-8834

GILLIS QUARRIES LIMITED
94 Wenzel Street
Box 17, Group 523, R.R.5
Winnipeg, Manitoba
R2C 2Z2
Ivan Bickell
Ph. 204-222-2242
Fax 204-222-7849

I.XL INDUSTRIES
P.O. Box 70
Medicine Hat, Alberta
T1A 7E7
Malcolm Sisson
Ph. 403-526-5901
Fax 403-526-7680

I.XL INDUSTRIES
#2, 4500 - 5 Street N.E.
Calgary, Alberta
T2E 7C3
Brian Cote
Ph. 403-276-8126
Fax 403-277-8661

I.XL INDUSTRIES
511 Dewdney Avenue East
Regina, Saskatchewan
S4N 4E9
Doug Stains
Ph. 306-757-2661
Fax 306-565-3747

I.XL INDUSTRIES
#6, 170 Hargrave Street
Winnipeg, Manitoba
R3C 3H4
Kevin Wright
Ph. 204-943-9069
Fax 204-947-5584

KILDONAN CONCRETE PRODUCTS
221 Panet Road
Winnipeg, Manitoba
R2J OS4
Ron Ruhr
Ph. 204-233-5666
Fax 204-233-2636

TALLCRETE MATERIALS LIMITED
1436 Chevrier Blvd.
Winnipeg, Manitoba
R3T 1Y6
Murray Isaac
Ph. 204-453-8335
Fax 204-453-5205